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Abstract—Synthetic aperture sonar (SAS) is emerging as the
reference technique for high resolution imaging of the seabed.
Given the insufficient positioning accuracy, the harsh ocean
environment and lack of stability on relatively small platforms
carrying the sonar, an optimal SAS image quality is not always
guaranteed. In this paper, we present a technique to quantify
the image quality based on the actual SAS images through-
the-sensor. We have previously presented approaches to predict
the sharpness in SAS images from meta-data, but in practice
those have not always been precise given their predictive nature.
We now introduce an image-based sharpness estimate that can
be combined with the meta-data prediction. The image-based
estimate is derived by locating candidate point scatterers and
estimating key parameters from their point-spread functions.
These provide information about defocus and unwanted grating
lobes, the two most common types of image degradation in SAS.
This technique requires texture in the image. For areas where
no point scatterers can be detected, we rely only on meta-data
to predict sharpness.

Index Terms—Synthetic aperture sonar, performance estima-
tion, image quality, sharpness

I. INTRODUCTION

With the emergence and technical developments of Au-
tonomous Underwater Vehicles (AUVs) over the last two
decades, these platforms have proven to be a valuable asset
for many applications, including mine countermeasure (MCM)
operations. AUVs equipped with high-resolution synthetic
aperture sonar (SAS) provide a superior combination of data
quality and sensor range.

At FFI, we have worked on through-the-sensor performance
estimation methods over the last years and derived a model
for the sonar mine search phase performance based on a
number of parameters given a priori and measured in-situ
[1]. The two main parameters are: Image quality to quantify
the performance of the sonar in the given environment [2];
Image complexity to quantify the difficulty of detecting and
classifying a target against the given image background [3].
Both parameters depend on various sub-parameters. For image
quality, these are:

• Generalized signal to noise ratio (SNR), which is an
estimate of the SNR in the actual measured sonar data
at a given location in the image. It can be estimated
reliably from the side-scan interferometric coherence, if
two receiver arrays are available for each side of the
vehicle [4].

• Radiometric resolution representing the pixel value accu-
racy or target strength accuracy. The pixel value carries
valuable information, and is strongly utilized in synthetic
aperture radar (SAR) [5]. It requires absolute calibrated
hardware and software, and proper treatment of geom-
etry. Currently, we do not utilize this, and assume this
parameter to be constant.

• Theoretical geometric resolution of the SAS system,
which is a constant for given hardware and processing
choices.

• Sharpness, which is an estimate of how well focused a
SAS image is. It describes how close the actual resolu-
tion is to the theoretical (maximum possible) geometric
resolution.

Other through-the-sensor quality estimates could provide valu-
able information, e.g. shadow contrast [6] as an additional
means for assessing the impact from grating lobes.

In this paper, we concentrate on quantifying the sharpness
in SAS images through-the-sensor based on the actual images
themselves. We first locate candidate point scatterers and
then measure their point spread function (PSF) properties [7,
chapter 4], inspired by the approach suggested in [8].

We first discuss the limiting factors for SAS image quality
and then describe a technique to estimate image sharpness
from meta-data and directly from the image. We apply the
technique on example data from the HISAS 1032 interferomet-
ric SAS on-board a HUGIN AUV and evaluate the accuracy of
the estimated sharpness values on good and degraded images.



II. SAS IMAGE QUALITY

There are several common causes for reduced SAS image
quality [9], which we list below along with information on
how each cause impacts our work:

1) Unwanted multiple reflections from the sea surface in
shallow waters: We use interferometric coherence as a
measure of this impact on SAS image quality [4]. We
thereby have an accurate tool to measure the reduced
quality due to multipath.

2) Ocean currents causing the AUV to run with horizontal
crab: There are different signal processing strategies
that may handle crab well or poorly. The output image
quality is therefore a function of choice of algorithm.

3) Rough terrain causing vertically nonlinear tracks: It
becomes more demanding to produce a perfectly sharp
image when the sensor moves in rough terrain.

4) Guidance and control induced nonlinear tracks: Any
deviation from a straight line, either in the horizontal
or vertical plane, will cause less favorable conditions
for successful SAS processing.

5) Unknown and uncompensated navigational errors: We
use an integrated navigation solution based both on
the inertial navigation and sonar micro-navigation. Any
error in the micro-navigation (e.g. loss of track due
to multipath) will therefore also affect the navigation
solution.

6) Sound speed errors: The sound speed in the ocean varies
up to 4% with depth and season. SAS is nearfield
imaging, and incorrect sound speed will cause defocus.

These six common causes for potential reduction of SAS
image quality should be treated differently. 1) is a fundamental
limitation. If the sonar data are contaminated with unwanted
multipath, there basically does not exist any good solution to
correct that problem. For 2) - 4), there may be alternative
processing strategies that will improve the SAS image quality.
In 5), the error is unknown, and therefore harder to categorize.
6) is typically slowly varying, relatively easy to monitor, and
relatively easy to correct for.

We suggest a two-fold approach for determining the re-
duced sharpness in SAS images both using meta-data and
extracting information from the images (see Fig. 1). Relevant
factors for the meta-data based prediction are described in
[2]. Over the years, we have found the most important meta-
data contributions are to handle both horizontal (yaw) and
vertical (pitch) vehicle crab, deviation from a straight vehicle
track and micro-navigation coherence. The meta-data based
prediction will not be described further in this article since the
main scope here is to present our image-based contribution to
sharpness estimation. In all cases mentioned above, except 1),
any predicted sharpness cannot fully replace a direct image-
based estimated sharpness.

Our image-based method requires texture in the image. If
there is not sufficient texture present, we solely use the meta-
data prediction that has been our standard sharpness estimator
up to date.

Fig. 1. Sharpness estimation flowchart

III. SHARPNESS ESTIMATION

Sharpness describes how close the actual resolution is to the
theoretical geometric resolution. When these two resolutions
deviate consistently from each other for nearby point scatter-
ers, we have an indication for image degradation. This is the
basis for constructing our image-based sharpness estimation,
which consists of several steps visualized in the left side of
Fig. 1.

Starting from a single look complex (SLC) SAS image and
given essential sonar and imaging parameters, we have looked
at several techniques to enhance the image for point scatterer
detection, from purely magnitude-based image analysis to
metrics involving the wavenumber domain to obtain various
statistics in multilook images [10], and wavelet shrinking using
the coherence of the wavelet decomposition of two multilook
images inspired by [11]. The result of this step is an image
with enhanced point scatterers and reduced speckle, which
facilitates detection of candidate point scatterers.

For the detection step, we choose the pixel coordinates of a
region of interest (ROI) centered around suitable local maxima
in the enhanced image. Subsequently, for each detected point
scatterer candidate, we extract several features from the mea-
sured PSF, with the most important being the measured along-
track and across-track resolution. This is inspired by [8] who
calculate the actual resolution from detected reflectors sorted
by size. Additionally, we calculate features such as peak main
lobe to average power level outside the main lobe and peak
main lobe to peak transmission grating lobe level.

Finally, we convert the point scatterer features into a sharp-
ness metric. We suggest that the ratio of the maximum (i.e.,
best) resolution to the measured resolution is equivalent to the
ratio of the focused energy, F, to the total energy (focused



and defocused), F+D. We can then construct a resolution loss
factor,

α =
F

F +D
=

σmax

σmeasured
. (1)

The impact of resolution loss on the system performance,
γresolution(α), can be estimated by running the system repeat-
edly on high resolution images while artificially imposing an
increasing resolution loss. For the specific case of MCM where
the target sizes are known, this factor can be scaled to reflect
the minimum number of independent pixels per dimension
on the target in order to obtain a certain detection and
classification score [12], [13]. The degradation of resolution
should be slowly varying over the image. In areas where we
detect many candidate point scatterers, we expect the majority
of their resolution estimates to be consistent, and can let the
local median value represent the resolution of the area. For
areas without candidate point scatterers, we could have noise
or speckle, and neither can provide any information on the
resolution.

Grating lobes degrade the image by generating defocused
image replicas, mainly along the along-track axis [14]. A
degradation is only observed where the grating lobe replica
is strong compared to the local scatterers. Assuming that the
energy from grating lobes, G, can be separated from the energy
without grating lobes, S, we can construct a quality factor,

γgratinglobe =
S

S +G
. (2)

The degradation from grating lobes is mainly local to along-
track areas next to strong scatterers, and must be evaluated
over the entire image with only local smoothing.

We may combine the different coherence contributions into
a resulting image-based sharpness estimate,

γsharpnessimage
= γresolution · γgrating. (3)

This estimate together with γsharpnessmeta
results into a final

sharpness estimate γsharpness, which in turn can be combined
with the interferometric coherence, representing the signal-to-
noise ratio, and theoretical geometric resolution as well as
radiometric resolution into a final image quality metric as
suggested in [2].

IV. RESULTS

Our starting point is a SAS image from the Oslofjord in
Norway with flat seafloor obtained by FFI’s HUGIN AUV
equipped with interferometric two-sided HISAS 1032, see
Fig. 2. Both the HUGIN AUV and HISAS are developed in
cooperation of FFI and Kongsberg Maritime. The displayed
scene features a larger rock outcrop on short range, rather
featureless seafloor at medium range and some unknown
strong scatterers at max range. The vehicle depth and height
are around 40 m and 25 m respectively, hence deep enough to
avoid any unwanted multiple reflections from the sea surface.
The signal-to-noise ratio is high in the whole image covering a
seafloor patch of 140 m×140 m. Meta-data predictions indicate
neither vehicle crab nor deviation from a straight vehicle track

Fig. 2. Speckle-reduced SAS image of size 140 m×140 m with seafloor in
the Oslofjord in Norway. Range increases from 30 m (bottom) to 170 m (top).
The red rectangle marks the area from Fig. 4.

and micronavigation coherence is good as well. Everything
points at that this image is of high quality and without any
visible degradation.

To demonstrate our image-based sharpness estimation, we
induce different types of common errors and re-run the SAS
imaging processor to produce realistic, but degraded versions
of the image from Fig. 2. The induced errors we focus further
on are sound speed, yaw and surge, one at a time. In Fig. 3
we illustrate the influence of these three kinds of errors to the
PSF for a simulated strong point scatterer at 60 m range. For
each type of error we examine two realizations, resulting in a
weaker and a stronger degradation. Key observations are:

• With increasing error in sound speed or surge scaling, the
along-track resolution deteriorates strongly. Already for
the smallest error the resolution changes from 2.8 cm to
6.4 cm and 5.1 cm, respectively. Interestingly, yaw error
does not appear to have any impact on the resolution.

• Yaw error introduces grating lobes. The higher the yaw
error, the higher the grating lobes. A larger surge error
also introduces grating lobes, but not as strong as with
yaw error.

• None of the induced errors have an impact on the across-
track (range) resolution.

We have chosen to induce the following errors to the
original data forming the SAS image from Fig. 2: 10 m/s
added sound speed error, 0.2◦ added yaw error and 1.006
surge scaling error. These values are not unrealistic in practice
and lie in between those shown in Fig. 3. The original image
from from Fig. 2 as well as the three degradations are shown
more detailed in Fig. 4 for a chosen area of size 24 m×24 m



Fig. 3. Effects to point-spread function by errors in surge, sound speed and
yaw.

at around 150 m range. Two different methods for image
enhancement and detection were used to locate candidate point
scatterers, shown in cyan circles and white diamonds. The
first method (cyan) only operates on the magnitude images
using a 2-D difference of Gaussians function, while the second
method (white) uses a wavelet shrinking algorithm utilizing
the coherence of wavelet coefficients over three scales for two
independent looks obtained from the wavenumber domain.

Each type of induced error has a different effect on the final
image. With sound speed error the image appears slightly more
blurred and scatterers are range shifted from their original
position. For 10 m/s increased sound speed, there is a shift
of around 1 m at max range. Regarding yaw error, grating
lobes are clearly visible as phantom echoes to the sides of the
largest structures on the seafloor. The energy from the main
object is distributed, hence the object echo appears weaker
than in the original image, which also leads to less contrast
between highlight and shadow. In the case of degradation due
to surge error, we clearly see a blurred image. Scatterers are
stretched along-track, hence deterioration in resolution. The
scatterers may also be along-track shifted, dependent on the
surge scaling error.

Concerning the two fundamentally different methods for
detecting candidate point scatterers, we observe that they agree
on some but far from all detections. Visually and due to
the lack of ground truth information, each method’s result
seems plausible in most cases such that it is difficult to judge
which method performs better. Both methods have the highest
number of detections in the original image indicating that
an image without degradation features more point scatterers.
The image with surge error yields the lowest number of
detections. Since each detection is performed independently
from the original image or the other degradations and without
any feature-matching, only some point scatterers are detected
persistently in all images. This is not a problem as long as
the chosen candidates are suitable for extracting features from
the point-spread function and are scattered across the image,
which appears to be true here.

Focusing on the complete images of size 140 m×140 m, we
extract a number of features in regions of size 30 cm×20 cm
centered around each detection. In Fig. 5 we present the
median along-track (a) and across-track (b) resolution versus
range, smoothed in a moving average window of 10 m (for the
wavelet-based set of detections, but results are comparable for
the other set of detections). Theoretical resolutions for these
images are 3.7 cm along-track and 3.2 m across-track. In the
smoothed plots in Fig. 5, the lowest resolutions are around
4.9 cm along-track and 4.3 cm across-track, which is a good
achievement for a set with real data. Across-track resolution
is as expected close to constant for any of the images. Both
the non-degraded and the yaw error image have comparable
along-track resolutions independent of range. Sound speed
error and surge error causes loss of along-track resolution with
increasing range (as already indicated in Fig. 3) with the surge
case being the worst in terms of along-track resolution (as can
be observed by comparing the images of Fig. 4).

Grating lobes constitute shifted and defocused replica of
the image. A resulting degradation mainly occurs where these
replicas are strong compared to the local scene. The degrada-
tion from grating lobes is therefore local, and no direct range
dependence as in Fig. 5 can be expected.

V. SUMMARY

This work is a contribution to FFI’s ongoing efforts to
improve automated MCM. For the sonar mine search phase,
the main inputs are through-the-sensor estimates of image
quality and image complexity. The most important parameters
for image quality estimation are the signal-to-noise ratio (de-
rived reliably from interferometric coherence) and sharpness.
Degradations of image quality due to e.g. noise or multipath
are captured by the signal-to-noise ratio, while navigational
errors, nonlinear vehicle tracks and sound speed errors are to
be captured by the sharpness parameter. Previously, this one
has been predicted by meta-data only. In this article we have
described ideas how to additionally use information from the
actual SAS images by locating suitable point scatterers and
extracting features of their point spread function describing
loss of image resolution and unwanted grating lobes. This
approach requires texture in the image. If no point scatterers
are detected (i.e. due to noise or speckle), sharpness will only
be estimated from meta-data.

Utilizing through-the-sensor data becomes more important
with an increasing degree of autonomy in modern AUV-based
minehunting. The system needs to be able to validate collected
sensor data itself. For instance, if the estimated sharpness,
hence the quality of SAS images produced on-board during
a mission, is not considered good enough, an alternative
algorithm could be applied for re-imaging with the goal to
provide the best possible data quality at the end of a mission.

We have suggested a framework for through-the-sensor
estimation of image sharpness. We have also investigated
candidate methods for identification of point scatterers and
extraction of attached image quality metrics. This is ongoing
work, and it is unclear which method for feature extraction and



(a) Original non-degraded SAS image (b) SAS image with induced 10 m/s sound speed error

(c) SAS image with induced 0.2◦ yaw error (d) SAS image with induced 1.006 surge scaling error

Fig. 4. Detailed area of the image from Fig. 2 (red rectangle) of size 24 m×24 m at around 150 m range with candidate point scatterers using two different
enhancement and detection methods (white diamonds and cyan circles).



(a) Median along-track resolution

(b) Median across-track resolution

Fig. 5. Resolution versus range (moving average over 10 m range) for images
with different degradations.

candidate point scatterer detection performs best. A thorough
validation for robustness needs to be performed, both on
simulated and real data examples of varying degradation and
image texture level. Moreover, merging key point scatterer
function features into a image-based sharpness estimate as well
as constructing a final sharpness estimate including meta-data
predictions have to be validated.
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